Title: | Quadratic Programming Solver using the 'OSQP' Library |
---|---|
Description: | Provides bindings to the 'OSQP' solver. The 'OSQP' solver is a numerical optimization package or solving convex quadratic programs written in 'C' and based on the alternating direction method of multipliers. See <doi:10.48550/arXiv.1711.08013> for details. |
Authors: | Bartolomeo Stellato [aut, ctb, cph], Goran Banjac [aut, ctb, cph], Paul Goulart [aut, ctb, cph], Stephen Boyd [aut, ctb, cph], Eric Anderson [ctb], Vineet Bansal [aut, ctb], Balasubramanian Narasimhan [cre, ctb] |
Maintainer: | Balasubramanian Narasimhan <[email protected]> |
License: | Apache License 2.0 | file LICENSE |
Version: | 0.6.3.3 |
Built: | 2024-11-12 05:11:30 UTC |
Source: | https://github.com/osqp/osqp-r |
OSQP Solver object
osqp(P = NULL, q = NULL, A = NULL, l = NULL, u = NULL, pars = osqpSettings())
osqp(P = NULL, q = NULL, A = NULL, l = NULL, u = NULL, pars = osqpSettings())
P , A
|
sparse matrices of class dgCMatrix or coercible into such, with P positive semidefinite. (In the interest of efficiency, only the upper triangular part of P is used) |
q , l , u
|
Numeric vectors, with possibly infinite elements in l and u |
pars |
list with optimization parameters, conveniently set with the function
|
Allows one to solve a parametric
problem with for example warm starts between updates of the parameter, c.f. the examples.
The object returned by osqp
contains several methods which can be used to either update/get details of the
problem, modify the optimization settings or attempt to solve the problem.
An R6-object of class "osqp_model" with methods defined which can be further used to solve the problem with updated settings / parameters.
model = osqp(P=NULL, q=NULL, A=NULL, l=NULL, u=NULL, pars=osqpSettings()) model$Solve() model$Update(q = NULL, l = NULL, u = NULL, Px = NULL, Px_idx = NULL, Ax = NULL, Ax_idx = NULL) model$GetParams() model$GetDims() model$UpdateSettings(newPars = list()) model$GetData(element = c("P", "q", "A", "l", "u")) model$WarmStart(x=NULL, y=NULL) print(model)
a string with the name of one of the matrices / vectors of the problem
list with optimization parameters
## example, adapted from OSQP documentation library(Matrix) P <- Matrix(c(11., 0., 0., 0.), 2, 2, sparse = TRUE) q <- c(3., 4.) A <- Matrix(c(-1., 0., -1., 2., 3., 0., -1., -3., 5., 4.) , 5, 2, sparse = TRUE) u <- c(0., 0., -15., 100., 80) l <- rep_len(-Inf, 5) settings <- osqpSettings(verbose = FALSE) model <- osqp(P, q, A, l, u, settings) # Solve res <- model$Solve() # Define new vector q_new <- c(10., 20.) # Update model and solve again model$Update(q = q_new) res <- model$Solve()
## example, adapted from OSQP documentation library(Matrix) P <- Matrix(c(11., 0., 0., 0.), 2, 2, sparse = TRUE) q <- c(3., 4.) A <- Matrix(c(-1., 0., -1., 2., 3., 0., -1., -3., 5., 4.) , 5, 2, sparse = TRUE) u <- c(0., 0., -15., 100., 80) l <- rep_len(-Inf, 5) settings <- osqpSettings(verbose = FALSE) model <- osqp(P, q, A, l, u, settings) # Solve res <- model$Solve() # Define new vector q_new <- c(10., 20.) # Update model and solve again model$Update(q = q_new) res <- model$Solve()
For further details please consult the OSQP documentation: https://osqp.org/
osqpSettings( rho = 0.1, sigma = 1e-06, max_iter = 4000L, eps_abs = 0.001, eps_rel = 0.001, eps_prim_inf = 1e-04, eps_dual_inf = 1e-04, alpha = 1.6, linsys_solver = c(QDLDL_SOLVER = 0L), delta = 1e-06, polish = FALSE, polish_refine_iter = 3L, verbose = TRUE, scaled_termination = FALSE, check_termination = 25L, warm_start = TRUE, scaling = 10L, adaptive_rho = 1L, adaptive_rho_interval = 0L, adaptive_rho_tolerance = 5, adaptive_rho_fraction = 0.4, time_limit = 0 )
osqpSettings( rho = 0.1, sigma = 1e-06, max_iter = 4000L, eps_abs = 0.001, eps_rel = 0.001, eps_prim_inf = 1e-04, eps_dual_inf = 1e-04, alpha = 1.6, linsys_solver = c(QDLDL_SOLVER = 0L), delta = 1e-06, polish = FALSE, polish_refine_iter = 3L, verbose = TRUE, scaled_termination = FALSE, check_termination = 25L, warm_start = TRUE, scaling = 10L, adaptive_rho = 1L, adaptive_rho_interval = 0L, adaptive_rho_tolerance = 5, adaptive_rho_fraction = 0.4, time_limit = 0 )
rho |
ADMM step rho |
sigma |
ADMM step sigma |
max_iter |
maximum iterations |
eps_abs |
absolute convergence tolerance |
eps_rel |
relative convergence tolerance |
eps_prim_inf |
primal infeasibility tolerance |
eps_dual_inf |
dual infeasibility tolerance |
alpha |
relaxation parameter |
linsys_solver |
which linear systems solver to use, 0=QDLDL, 1=MKL Pardiso |
delta |
regularization parameter for polish |
polish |
boolean, polish ADMM solution |
polish_refine_iter |
iterative refinement steps in polish |
verbose |
boolean, write out progress |
scaled_termination |
boolean, use scaled termination criteria |
check_termination |
integer, check termination interval. If 0, termination checking is disabled |
warm_start |
boolean, warm start |
scaling |
heuristic data scaling iterations. If 0, scaling disabled |
adaptive_rho |
cboolean, is rho step size adaptive? |
adaptive_rho_interval |
Number of iterations between rho adaptations rho. If 0, it is automatic |
adaptive_rho_tolerance |
Tolerance X for adapting rho. The new rho has to be X times larger or 1/X times smaller than the current one to trigger a new factorization |
adaptive_rho_fraction |
Interval for adapting rho (fraction of the setup time) |
time_limit |
run time limit with 0 indicating no limit |
Solves
s.t.
for real matrices P (nxn, positive semidefinite) and A (mxn) with m number of constraints
solve_osqp( P = NULL, q = NULL, A = NULL, l = NULL, u = NULL, pars = osqpSettings() )
solve_osqp( P = NULL, q = NULL, A = NULL, l = NULL, u = NULL, pars = osqpSettings() )
P , A
|
sparse matrices of class dgCMatrix or coercible into such, with P positive semidefinite. Only the upper triangular part of P will be used. |
q , l , u
|
Numeric vectors, with possibly infinite elements in l and u |
pars |
list with optimization parameters, conveniently set with the function |
A list with elements x (the primal solution), y (the dual solution), prim_inf_cert, dual_inf_cert, and info.
Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd and S. (2018). “OSQP: An Operator Splitting Solver for Quadratic Programs.” ArXiv e-prints. 1711.08013.
osqp
. The underlying OSQP documentation: https://osqp.org/
library(osqp) ## example, adapted from OSQP documentation library(Matrix) P <- Matrix(c(11., 0., 0., 0.), 2, 2, sparse = TRUE) q <- c(3., 4.) A <- Matrix(c(-1., 0., -1., 2., 3., 0., -1., -3., 5., 4.) , 5, 2, sparse = TRUE) u <- c(0., 0., -15., 100., 80) l <- rep_len(-Inf, 5) settings <- osqpSettings(verbose = TRUE) # Solve with OSQP res <- solve_osqp(P, q, A, l, u, settings) res$x
library(osqp) ## example, adapted from OSQP documentation library(Matrix) P <- Matrix(c(11., 0., 0., 0.), 2, 2, sparse = TRUE) q <- c(3., 4.) A <- Matrix(c(-1., 0., -1., 2., 3., 0., -1., -3., 5., 4.) , 5, 2, sparse = TRUE) u <- c(0., 0., -15., 100., 80) l <- rep_len(-Inf, 5) settings <- osqpSettings(verbose = TRUE) # Solve with OSQP res <- solve_osqp(P, q, A, l, u, settings) res$x